网站首页 > 资源文章 正文
阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。
如需转载请附上本文源链接!
1. 项目简介
本教程将带你一步步实现一个简单的网络入侵检测系统。我们将使用Python和一些常用的库,如scikit-learn和pandas。最终,我们将实现一个可以检测网络流量中的异常行为的模型。
2. 环境准备
首先,你需要安装以下库:
- pandas
- numpy
- scikit-learn
你可以使用以下命令安装这些库:
pip install pandas numpy scikit-learn
3. 数据准备
我们将使用KDD Cup 1999数据集,这是一个常用的网络入侵检测数据集。你可以从UCI机器学习库下载该数据集。
import pandas as pd
# 加载数据集
column_names = ["duration","protocol_type","service","flag","src_bytes","dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins","logged_in","num_compromised","root_shell","su_attempted","num_root","num_file_creations","num_shells","num_access_files","num_outbound_cmds","is_host_login","is_guest_login","count","srv_count","serror_rate","srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate","diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count","dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate","dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate","dst_host_rerror_rate","dst_host_srv_rerror_rate","label"]
data = pd.read_csv("kddcup.data_10_percent_corrected", header=None, names=column_names)
print(data.head())
4. 数据预处理
我们需要对数据进行预处理,包括编码分类变量和标准化数据。
from sklearn.preprocessing import LabelEncoder, StandardScaler
# 编码分类变量
categorical_columns = ["protocol_type", "service", "flag"]
for column in categorical_columns:
encoder = LabelEncoder()
data[column] = encoder.fit_transform(data[column])
# 分离特征和标签
X = data.drop("label", axis=1)
y = data["label"]
# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
5. 构建模型
我们将使用scikit-learn中的随机森林算法来构建入侵检测模型。
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 构建模型
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
6. 评估模型
使用测试数据评估模型性能。
from sklearn.metrics import classification_report, accuracy_score
# 预测
y_pred = model.predict(X_test)
# 评估
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(classification_report(y_test, y_pred))
7. 完整代码
将上述步骤整合成一个完整的Python脚本:
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
# 加载数据集
column_names = ["duration","protocol_type","service","flag","src_bytes","dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins","logged_in","num_compromised","root_shell","su_attempted","num_root","num_file_creations","num_shells","num_access_files","num_outbound_cmds","is_host_login","is_guest_login","count","srv_count","serror_rate","srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate","diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count","dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate","dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate","dst_host_rerror_rate","dst_host_srv_rerror_rate","label"]
data = pd.read_csv("kddcup.data_10_percent_corrected", header=None, names=column_names)
# 编码分类变量
categorical_columns = ["protocol_type", "service", "flag"]
for column in categorical_columns:
encoder = LabelEncoder()
data[column] = encoder.fit_transform(data[column])
# 分离特征和标签
X = data.drop("label", axis=1)
y = data["label"]
# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 构建模型
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(classification_report(y_test, y_pred))
8. 总结
通过本教程,你学会了如何使用Python和scikit-learn实现一个简单的网络入侵检测系统。你可以尝试使用不同的算法和参数,进一步提升检测效果。
- 上一篇: 网络安全小知识:什么是入侵检测系统?
- 下一篇: 入侵检测系统(IDS)和入侵防御系统(IPS)的区别
猜你喜欢
- 2024-09-11 pytbull-入侵检测/预防系统(IDS / IPS)测试框架
- 2024-09-11 Windows系统的入侵排查——基础技术原理
- 2024-09-11 网络入侵检测系统之Suricata(三)--日志代码详解
- 2024-09-11 一套详细的弱电工程入侵报警系统设计方案
- 2024-09-11 应急响应:Linux系统入侵排查示例(linux入侵检测系统)
- 2024-09-11 网站入侵检测系统的优点是什么(网络入侵检测系统的优点)
- 2024-09-11 海水入侵在线监测系统——爱默里地下水原位自动监测仪
- 2024-09-11 一套详细的入侵报警系统技术要求,可作招标要求
- 2024-09-11 入侵防御系统IPS(入侵防御系统IPS部署)
- 2024-09-11 入侵检测原型系统的设计与实现(入侵检测的原理)
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- 电脑显示器花屏 (79)
- 403 forbidden (65)
- linux怎么查看系统版本 (54)
- 补码运算 (63)
- 缓存服务器 (61)
- 定时重启 (59)
- plsql developer (73)
- 对话框打开时命令无法执行 (61)
- excel数据透视表 (72)
- oracle认证 (56)
- 网页不能复制 (84)
- photoshop外挂滤镜 (58)
- 网页无法复制粘贴 (55)
- vmware workstation 7 1 3 (78)
- jdk 64位下载 (65)
- phpstudy 2013 (66)
- 卡通形象生成 (55)
- psd模板免费下载 (67)
- shift (58)
- localhost打不开 (58)
- 检测代理服务器设置 (55)
- frequency (66)
- indesign教程 (55)
- 运行命令大全 (61)
- ping exe (64)
本文暂时没有评论,来添加一个吧(●'◡'●)