前端开发入门到精通的在线学习网站

网站首页 > 资源文章 正文

每日算法:全排列问题

qiguaw 2024-11-24 20:39:48 资源文章 9 ℃ 0 评论

作者: sisterAn 来源: 三分钟学前端

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

输入: [1,2,3] 
输出: 
[ 
  [1,2,3], 
  [1,3,2], 
  [2,1,3], 
  [2,3,1], 
  [3,1,2], 
  [3,2,1] 
] 

本题是回溯算法的经典应用场景

1. 算法策略

回溯算法是一种搜索法,试探法,它会在每一步做出选择,一旦发现这个选择无法得到期望结果,就回溯回去,重新做出选择。深度优先搜索利用的就是回溯算法思想。

2. 适用场景

回溯算法很简单,它就是不断的尝试,直到拿到解。它的这种算法思想,使它通常用于解决广度的搜索问题,即从一组可能的解中,选择一个满足要求的解。

3. 代码实现

我们可以写一下,数组 [1, 2, 3] 的全排列有:

先写以 1 开头的全排列,它们是:[1, 2, 3], [1, 3, 2],即 1 + [2, 3] 的全排列;

再写以 2 开头的全排列,它们是:[2, 1, 3], [2, 3, 1],即 2 + [1, 3] 的全排列;

最后写以 3 开头的全排列,它们是:[3, 1, 2], [3, 2, 1],即 3 + [1, 2] 的全排列。

即回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

这显然是一个 递归 结构;

  • 递归的终止条件是:一个排列中的数字已经选够了 ,因此我们需要一个变量来表示当前程序递归到第几层,我们把这个变量叫做 depth ,或者命名为 index ,表示当前要确定的是某个全排列中下标为 index 的那个数是多少;
  • used(object):用于把表示一个数是否被选中,如果这个数字(num)被选择这设置为 used[num] = true ,这样在考虑下一个位置的时候,就能够以 O(1)的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。
let permute = function(nums) { 
    // 使用一个数组保存所有可能的全排列 
    let res = [] 
    if (nums.length === 0) { 
        return res 
    } 
    let used = {}, path = [] 
    dfs(nums, nums.length, 0, path, used, res) 
    return res 
} 
let dfs = function(nums, len, depth, path, used, res) { 
    // 所有数都填完了 
    if (depth === len) { 
        res.push([...path]) 
        return 
    } 
    for (let i = 0; i < len; i++) { 
        if (!used[i]) { 
            // 动态维护数组 
            path.push(nums[i]) 
            used[i] = true 
            // 继续递归填下一个数 
            dfs(nums, len, depth + 1, path, used, res) 
            // 撤销操作 
            used[i] = false 
            path.pop() 
        } 
       
    } 
} 

4. 复杂度分析

时间复杂度:O(n?n!),其中 n 为序列的长度

这是一个排列组合,每层的排列组合数为:Amn=n!/(n?m)! ,故而所有的排列有 :

A1n + A2n + … + An-1n = n!/(n?1)! + n!/(n?2)! + … + n! = n! * (1/(n?1)! + 1/(n?2)! + … + 1) <= n! * (1 + 1/2 + 1/4 + … + 1/2n-1) < 2 * n!

并且每个内部结点循环 n 次,故非叶子结点的时间复杂度为 O(n?n!)

  • 空间复杂度:O(n)

leetcode:https://leetcode-cn.com/problems/permutations/solution/quan-pai-lie-wen-ti-by-user7746o/

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表